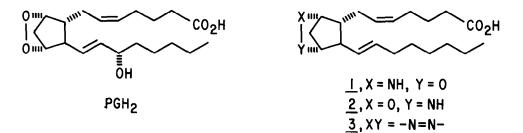
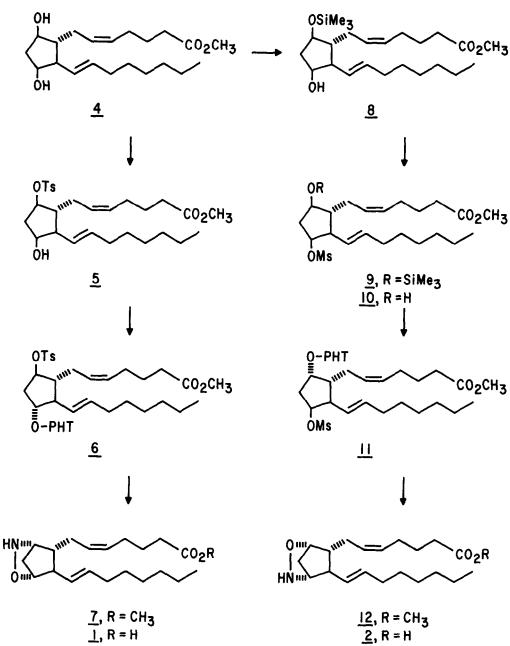
Tetrahedron Letters No. 1, pp 41 - 44, 1978. Pergamon Press. Printed in Great Britain.

## THE SYNTHESIS OF 15-DEOXY-9,11-(EPOXYIMINO)PROSTAGLANDINS-POTENT THROMBOXANE SYNTHETASE INHIBITORS


## G.L. Bundy\* and D.C. Peterson The Upjohn Company Kalamazoo, Michigan

(Received in USA 19 September 1977; received in UK for publication 8 November 1977)


The central role of the prostaglandin endoperoxides  $PGG_2$  and  $PGH_2^{1}$  in arachidonic acid metabolism is becoming increasingly apparent. These unstable peroxides are the precursors not only for the classical prostaglandins<sup>1</sup> ( $PGE_2$ ,  $PGF_2\alpha$ ,  $PGD_2$ ), but also for a hydroxylated C-17 fatty acid (HHT), the thromboxanes<sup>2</sup> (TXA<sub>2</sub> and TXB<sub>2</sub>) and the recently discovered prostacyclin<sup>9</sup> ( $PGI_2$ ). Current studies into the complex interactions between these various pathways in physiological systems have benefited from the availability of several chemically more stable endoperoxide analogs.<sup>4</sup> These analogs, similar in shape and polarity to the endoperoxides, exhibit a biological activity profile reminiscent of the less stable endoperoxides themselves.<sup>5</sup>

Recently, we have found that  $9\alpha$ ,ll $\alpha$ -azoprosta-5Z,l3E-dienoic acid <u>3</u><sup>6</sup>, which lacks the C-15 hydroxyl group of the natural prostaglandins and also most of the agonist activities typical of PGH<sub>2</sub><sup>5</sup> and its analogs, is a potent inhibitor of the enzyme which converts PGH<sub>2</sub> into thromboxane A<sub>2</sub> in human platelets.<sup>6</sup>

We report herein the synthesis of two 15-deoxy prostaglandin endoperoxide analogs  $\underline{1}$  and  $\underline{2}$ , in which the chemically unstable peroxide linkage of PGH<sub>2</sub> has been replaced with the more stable epoxyimino (-NH-O-) group. Like 15-deoxy azo analog  $\underline{3}$ , these cyclic 0,N-disubstituted hydroxylamine derivatives do not exhibit the biological activities typical of PGH<sub>2</sub>, but rather are potent inhibitors of the thromboxane A<sub>2</sub> synthetase in human platelets.<sup>7</sup>

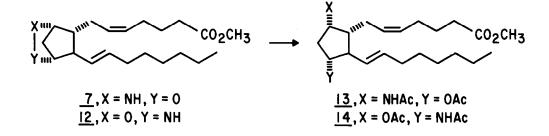


The synthetic pathway to epoxyimino compounds  $\underline{1}$  and  $\underline{2}$ , outlined in Figure I, begins in both cases with 15-deoxy-11ß-PGF<sub>2</sub> $\beta$ , available in four steps and 53% overall yield from PGF<sub>2</sub> $\alpha$  as described earlier.<sup>6</sup> Taking advantage of the different steric environments of the C-9 and C-11 hydroxyls in 15-deoxy-11ß-PGF<sub>2</sub> $\beta$  (4), conversion to the C-9 monotosylate 5 proceeded in 92% yield<sup>8</sup>



<u>7</u>, R = CH<sub>3</sub> <u>1</u>, R = H




No. 1

(1.5 equiv of <u>p</u>-toluenesulfonyl chloride, pyridine, 0°, 4 days). That the regioselective tosylation had occurred at C-9 and not C-11 was inferred from several considerations. Inspection of molecular models indicates that the C-9 hydroxyl, trans to the adjacent side chain, is clearly the less hindered of the two. Analogous selectivity is observed in the silylation of  $9\alpha$ ,ll $\alpha$ prostaglandin diols, where reaction occurs preferentially at the hydroxyl trans to the adjacent side chain ° (in this case C-11). In addition, the minor product in the formation of <u>5</u>, an isomeric hydroxytosylate isolated in 5% yield, was considerably more polar than <u>5</u> on thin layer chromatography. This increased polarity for the C-11 monotosylate by-product can be rationalized based on the greater accessibility of the C-9 hydroxyl for interaction with the silica.<sup>15</sup>

The monotosylate 5 was then treated with triphenylphosphine, N-hydroxyphthalimide and diethyl azodicarboxylate<sup>10</sup> in tetrahydrofuran (15 min, 0°), thereby affording N-alkoxyphthalimide <u>6</u> (45% yield after chromatography; PHT = phthalimido). Deprotection of the masked O-alkylhydroxylamine <u>6</u> with hydrazine (5 equiv, methanol, 25°, 1 hr) yielded epoxyimino ester <u>7</u> directly (77%), via the hydroxylamine tosylate, which could be seen by tlc early in the hydrazinolysis but which was never isolated. Standard ester hydrolysis with aqueous methanolic potassium hydroxide gave the lla,9a-epoxyimino acid <u>1</u> in 90% yield: mp 53-54° (from 5% ether/hexane); r<sub>f</sub> 0.39 (silica tlc plates, 50% ethyl acetate/hexane with 1% acetic acid);  $\delta_{\text{TMS}}^{\text{CDCl}_3}$  4.20 (CHO) and 3.65 ppm (CHN); mass spectrum of TMS derivative: M<sup>+</sup> 407.2832 (theoretical for C<sub>23</sub>H<sub>4</sub>,SiNO<sub>3</sub>: 407.2850).

The synthesis of  $9\alpha$ ,  $11\alpha$ -epoxyimino derivative  $\underline{2}$  (0 and NH interchanged from  $\underline{1}$ ) required blocking the C-9 hydroxyl group temporarily and converting the more hindered C-11 hydroxyl to a sulfonate ester. Attempted selective silylation of C-9 using <u>t</u>-butyldimethylsilyl chloride under standard conditions<sup>11</sup> proved surprisingly unsuccessful. Even at -60° (7 days), a statistical array of products was obtained including starting material, both monosilyl derivatives and the disilyl derivative. Selective silylation of 15-deoxy-11β-PGF<sub>2</sub>β <u>4</u> could be achieved with trimethylsilyldiethyl amine<sup>12</sup>, a sterically more discriminating silylating agent, yielding monosilyl derivative <u>8</u> (70% after rapid chromatographic purification).<sup>15</sup> Subsequent conversion to the C-11 mesylate (methanesulfonyl chloride, triethylamine, methylene chloride, 10 min, 0°) and removal of the silyl group (methanolic citric acid, 10 min, 20°) proceeded in essentially quantitative yield. Then, following the same sequence as before, monomesylate <u>10</u> was transformed into Nalkoxyphthalimide <u>11</u> (66%; mp 62-63°) and finally  $9\alpha$ ,  $11\alpha$ -epoxyimino derivative <u>12</u> and the corresponding acid <u>2</u>:  $r_f$  0.28 (silica plate, 50% ethyl acetate/hexane with 1% acetic acid)  $\delta_{\text{TMS}}^{\text{CDCl}_3}$ 4.30 (CHO) and 3.55 ppm (CHN).

Epoxyimino derivatives  $\frac{7}{2}$  and  $\frac{12}{12}$  were further characterized by reduction of the N-O bond<sup>19</sup>



(zinc, acetic acid, 25°, 20 min) followed by acetylation (acetic anhydride, pyridine, 25°, 3 h), which afforded derivatives <u>13</u> (M<sup>+</sup> 435.2984) and <u>14</u> (M<sup>+</sup> 435.3003) respectively (theoretical for  $C_{25}H_{41}NO_5$ : 435.2984).

The epoxyimino derivatives  $\underline{1}$  and  $\underline{2}$  showed only very low levels of activity on rat blood pressure and gerbil colon. However, like 15-deoxy azo analog  $\underline{3}$ , the epoxyimino analogs  $\underline{1}$  and  $\underline{2}$ are both potent inhibitors of thromboxane synthetase from human platelets (active in the range of  $10^{-5}$  to  $10^{-6}$  M).<sup>7</sup>

In addition to providing biologically interesting analogs, the synthetic scheme in Figure I offers a generic solution to the problem of synthesizing cyclic 0,N-disubstituted hydroxylamines, many of which are difficult to obtain by classical procedures.<sup>14</sup>

## REFERENCES

- 1. M. Hamberg and B. Samuelsson, Proc. Natl. Acad. Sci. USA 70(3), 899 (1973).
- 2. M. Hamberg, J. Svensson and B. Samuelsson, ibid. 72, 2994 (1975).
- 3. S. Moncada, R. Gryglewski, S. Bunting and J. Vane, Nature 263, 663 (1976).
- See for example: a. G.L. Bundy, Tetrahedron Lett. (24), 1957 (1975). b. E.J. Corey, K.C. Nicolaou, Y. Machida, C.L. Malmsten and B. Samuelsson, Proc. Natl. Acad. Sci. USA <u>72</u>, 3355 (1975).
- 5. R. Gorman, J. Cyclic Nucleotide Res. 1, 1 (1975).
- R. Gorman, G.L. Bundy, D.C. Peterson, F.F. Sun, O.V. Miller and F.A. Fitzpatrick, Proc. Nat'l Acad. Sci. USA 74 (9) 4007 (1977).
- 7. F.F. Sun, unpublished observation.
- 8. Structural assignments for the various synthetic intermediates were confirmed by infrared, proton magnetic resonance and mass spectroscopy on chromatographically homogeneous samples.
- 9. E.W. Yankee, U. Axen and G.L. Bundy, J. Am. Chem. Soc. 96, 5865 (1974).
- 10. E. Grochowski and J. Jurczak, Synthesis, 682 (1976).
- 11. E.J. Corey and A. Venkateswarlu, ibid: 94, 6190 (1972).
- 12. I. Weisz, K. Felfoldi and K. Kovacs, Acta Chim. Acad. Sci. Hung. 58, 189 (1968).
- 13. N. Nitsch and G. Kerze, Angew. Chem. 88, 801 (1976).
- 14. G. Just and L. Cutrone, Can. J. Chem. 54, 867 (1976) and references therein.
- 15. Independent chemical confirmation of the regiochemical assignments for hydroxytosylate <u>5</u> and hydroxymesylate <u>10</u> was provided by the following observations. The carboxylic acid corresponding to mesylate ester <u>10</u>, upon treatment with triphenylphosphine and 2,2'-di-pyridyl disulfide and heating in dilute toluene solution at 100° for 6 hr, afforded the 1,9β-lactone in 50% yield. [Method of E.J. Corey and K.C. Nicolaou, J. Am. Chem. Soc. <u>96</u>, 5614 (1974)]. Under identical conditions, the carboxylic acid corresponding to tosylate ester <u>5</u> formed the activated pyridinethiol ester intermediate, but did not lactonize. Molecular models clearly show that lactonization with the 11β-hydroxyl should be much more difficult than with the 9β-hydroxyl, based on steric considerations.